Hydrogels as feeder-free scaffolds for long-term self-renewal of mouse induced pluripotent stem cells.
نویسندگان
چکیده
Expanding undifferentiated induced pluripotent stem (iPS) cells in vitro is a basic requirement for application of iPS cells in both fundamental research and clinical regeneration. In this study, we intended to establish a simple, low cost and efficient method for the long-term self-renewal of mouse induced pluripotent stem (miPS) cells without using feeder-cells and adhesive proteins. Three scaffolds were selected for the long-term subculture of miPS cells over two months starting from passages 14 to 29: 1) a gelatin coated polystyrene (Gelatin-PS) that is a widely used scaffold for self-renewal of mouse embryonic stem (mES) cells; 2) a neutral hydrogel poly(N,N-dimethylacrylamide) (PDMAAm); and 3) a negatively charged hydrogel poly(2-acrylamido-2-methyl-propane sulfonic acid sodium salt) (PNaAMPS). Each passaged miPS cells on these scaffolds were cryopreserved successfully and the revived cells showed high viability and proliferation. The passaged miPS cells maintained a high undifferentiated state on all three scaffolds and a high level of pluripotency by expressing differentiation markers in vitro and forming teratomas in SCID mice with derivatives of all three germ layers. Compared to Gelatin-PS, the two hydrogels exhibited much better self-renewal performance in terms of high proliferation rate and level of expression of undifferentiated gene markers as well as efficiency in pluripotent teratoma formation. Furthermore, the PNaAMPS hydrogel demonstrated a slightly higher efficiency and simpler operation of cell expansion than the PDMAAm hydrogel. To conclude, PNaAMPS hydrogel is an excellent feeder-free scaffold because of its simplicity, low cost and high efficiency in expanding a large number of miPS cells in vitro.
منابع مشابه
Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity
The tentative clinical application of human pluripotent stem cells (hPSCs), such as human embryonic stem cells and human induced pluripotent stem cells, is restricted by the possibility of xenogenic contamination resulting from the use of mouse embryonic fibroblasts (MEFs) as a feeder layer. Therefore, we investigated hPSC cultures on biomaterials with different elasticities that were grafted w...
متن کاملHyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells.
Control of self-renewal and differentiation of human ES cells (hESCs) remains a challenge. This is largely due to the use of culture systems that involve poorly defined animal products and do not mimic the normal developmental milieu. Routine protocols involve the propagation of hESCs on mouse fibroblast or human feeder layers, enzymatic cell removal, and spontaneous differentiation in cultures...
متن کاملInduced pluripotent stem cells (iPSCs) based approaches for hematopoietic cancer therapy
Induced pluripotent stem cells (iPSCs) are reprogrammed from somatic cells through numerous transcription factors. Human induced pluripotent stem cell approaches are developing as a hopeful strategy to improve our knowledge of genetic association studies and the underlying molecular mechanisms. Rapid progression in stem cell therapy and cell reprogramming provides compelling reasons for its fe...
متن کاملConcise review: The evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings.
Current practices to maintain human pluripotent stem cells (hPSCs), which include induced pluripotent stem cells and embryonic stem cells, in an undifferentiated state typically depend on the support of feeder cells such as mouse embryonic fibroblasts (MEFs) or an extracellular matrix such as Matrigel. Culture conditions that depend on these undefined support systems limit our ability to interp...
متن کاملSmall Molecule-Assisted, Line-Independent Maintenance of Human Pluripotent Stem Cells in Defined Conditions
Human pluripotent stem cells (hPSCs) are conventionally grown in a mouse feeder cell-dependent manner. Chemically defined culture conditions are, however, desirable not only for potential medically oriented applications but also for investigating mechanisms of self-renewal and differentiation. In light of the rather high complexity and cost of existing defined hPSC culture systems, we have syst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of tissue engineering and regenerative medicine
دوره 9 4 شماره
صفحات -
تاریخ انتشار 2015